You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.
Introduction: 生成模型作为机器学习的一个子领域,在大量人工智能任务中得到了应用。近年来随着深度学习的突破,深度生成模型对人工智能各个子领域带来了大的改变,受到了学术界极大的关注,并在越来越多的应用中获得了突破。本课程将学习深度生成模型的基础学习算法,包括自回归模型、变分自编码器、生成对抗网络等。同时本课程将讲授深度生成模型在图像生成、计算机视觉、自然语言处理等方面的应用。最后,为了更深入地了解这个领域,我们将讲解前沿的生成模型技术和当前遇到的一些技术挑战,并代领大家阅读一些重要论文和完成一个课程项目。
董豪 2 years ago Update 'README.md'
Lecture 1 Introduction.pdf 2 years ago
Lecture 2 Data Representation.pdf 2 years ago
Lecture 4 Sequential Models - Recurrent Neural Networks.pdf 2 years ago
Lecture 5 Autoregressive Models.pdf 2 years ago
Lecture 6 Autoregressive Models.pdf 2 years ago
Lecture 7-8 From Autoencoder to VAE.pdf 2 years ago
Lecture 9 VAE variants.pdf 2 years ago
Lecture 10 Normalising Flow Models.pdf 2 years ago
Lecture 11 Normalising Flow Models.pdf 2 years ago
Lecture 13 Vanilla GAN.pdf 2 years ago
Lecture 14 Understanding GANs.pdf 2 years ago
Lecture 15 Selected GANs.pdf 2 years ago
Lecture 16-18 Practice.pdf 2 years ago
Lecture 19 Evaluation - Sampling Quality.pdf 2 years ago
Lecture 20 Evaluation - Density Evaluation & Latent Representation.pdf 2 years ago
Lecture 21 Evaluation - Practice.pdf 2 years ago
Lecture 22 Energy-based Models - Hopfield Network.pdf 2 years ago
Lecture 23 Energy-based Models - Boltzmann Machine.pdf 2 years ago
Lecture 24 Energy-based Models - Deep Belief Network & GAN.pdf 2 years ago
Lecture 25 Challenge - High-dimensional Data Generation.pdf 2 years ago
Lecture 26 Challenge - Learning Large Encoder.pdf 2 years ago
Lecture 27 Challenge - Others.pdf 2 years ago
Lecture 28 Application of Generative Models - Image-to-Image Translation.pdf 2 years ago
Lecture 29 Application - X learning.pdf 2 years ago
Lecture 30 Application - Advanced topics.pdf 2 years ago
README.md 2 years ago

Contributors (1)