|
- from scipy.io import loadmat
- from PIL import Image
- import numpy as np
- import os
- from glob import glob
- import cv2
- import argparse
-
-
- def cal_new_size(im_h, im_w, min_size, max_size):
- if im_h < im_w:
- if im_h < min_size:
- ratio = 1.0 * min_size / im_h
- im_h = min_size
- im_w = round(im_w*ratio)
- elif im_h > max_size:
- ratio = 1.0 * max_size / im_h
- im_h = max_size
- im_w = round(im_w*ratio)
- else:
- ratio = 1.0
- else:
- if im_w < min_size:
- ratio = 1.0 * min_size / im_w
- im_w = min_size
- im_h = round(im_h*ratio)
- elif im_w > max_size:
- ratio = 1.0 * max_size / im_w
- im_w = max_size
- im_h = round(im_h*ratio)
- else:
- ratio = 1.0
- return im_h, im_w, ratio
-
-
- def find_dis(point):
- square = np.sum(point*points, axis=1)
- dis = np.sqrt(np.maximum(square[:, None] - 2*np.matmul(point, point.T) + square[None, :], 0.0))
- dis = np.mean(np.partition(dis, 3, axis=1)[:, 1:4], axis=1, keepdims=True)
- return dis
-
- def generate_data(im_path):
- im = Image.open(im_path)
- im_w, im_h = im.size
- mat_path = im_path.replace('.jpg', '_ann.mat')
- points = loadmat(mat_path)['annPoints'].astype(np.float32)
- idx_mask = (points[:, 0] >= 0) * (points[:, 0] <= im_w) * (points[:, 1] >= 0) * (points[:, 1] <= im_h)
- points = points[idx_mask]
- im_h, im_w, rr = cal_new_size(im_h, im_w, min_size, max_size)
- im = np.array(im)
- if rr != 1.0:
- im = cv2.resize(np.array(im), (im_w, im_h), cv2.INTER_CUBIC)
- points = points * rr
- return Image.fromarray(im), points
-
-
- def parse_args():
- parser = argparse.ArgumentParser(description='Test ')
- parser.add_argument('--origin-dir', default='/home/baixinbei/s1/test4/Bayesian-Multi-Scale-Count/data/UCF-QNRF_ECCV18',
- help='original data directory')
- parser.add_argument('--data-dir', default='/home/baixinbei/s1/test4/Bayesian-Multi-Scale-Count/data/UCF-Train-Val-Test',
- help='processed data directory')
- args = parser.parse_args()
- return args
-
- if __name__ == '__main__':
- args = parse_args()
- save_dir = args.data_dir
- min_size = 512
- max_size = 2048
-
- for phase in ['Train', 'Test']:
- sub_dir = os.path.join(args.origin_dir, phase)
- if phase == 'Train':
- sub_phase_list = ['train', 'val']
- for sub_phase in sub_phase_list:
- sub_save_dir = os.path.join(save_dir, sub_phase)
- if not os.path.exists(sub_save_dir):
- os.makedirs(sub_save_dir)
- with open('{}.txt'.format(sub_phase)) as f:
- for i in f:
- im_path = os.path.join(sub_dir, i.strip())
- name = os.path.basename(im_path)
- print(name)
- im, points = generate_data(im_path)
- if sub_phase == 'train':
- dis = find_dis(points)
- points = np.concatenate((points, dis), axis=1)
- im_save_path = os.path.join(sub_save_dir, name)
- im.save(im_save_path)
- gd_save_path = im_save_path.replace('jpg', 'npy')
- np.save(gd_save_path, points)
- else:
- sub_save_dir = os.path.join(save_dir, 'test')
- if not os.path.exists(sub_save_dir):
- os.makedirs(sub_save_dir)
- im_list = glob(os.path.join(sub_dir, '*jpg'))
- for im_path in im_list:
- name = os.path.basename(im_path)
- print(name)
- im, points = generate_data(im_path)
- im_save_path = os.path.join(sub_save_dir, name)
- im.save(im_save_path)
- gd_save_path = im_save_path.replace('jpg', 'npy')
- np.save(gd_save_path, points)
|