Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
JiaChuan Shen ff9f826cd5 | 2 years ago | |
---|---|---|
AIContainer | 2 years ago | |
ColugoMum-Release | 2 years ago | |
Smart_container | 2 years ago | |
client | 2 years ago | |
image | 2 years ago | |
CITATION.cff | 2 years ago | |
LICENSE | 2 years ago | |
README.md | 2 years ago | |
requirements.txt | 2 years ago |
简体中文 | 启智OpenI | gitee | github
(项目更新会第一时间在OpenI启智社区首发,其余平台将同步更新)
目前在零售行业的实际运营过程中,会产生巨大的人力成本,例如导购、保洁、结算等,而其中,尤其需要花费大量的人力成本和时间成本在识别商品并对其进行价格结算的过程中,并且在此过程中,顾客也因此而需要排队等待。这样一来零售行业人力成本较大、工作效率极低,二来也使得顾客的购物体验下降。
随着计算机视觉技术的发展,以及无人化、自动化超市运营理念的提出,利用图像识别技术及目标检测技术实现产品的自动识别及自动化结算的需求呼之欲出,即自动结账系统(Automatic checkout, ACO)。基于计算机视觉的自动结账系统能有效降低零售行业的运营成本,提高顾客结账效率,从而进一步提升用户在购物过程中的体验感与幸福感。
袋鼯麻麻——智能零售结算平台致力于为大型线下零售体验店提供基于视觉的零售结算方案。
“袋鼯麻麻——智能零售结算平台”具体实现在零售过程中对用户购买商品的自动结算。即:利用PaddleClas团队开源的图像识别PP-ShiTu技术,精准地定位顾客购买的商品,并进行智能化、自动化的价格结算。当顾客将自己选购的商品放置在制定区域内时,“袋鼯麻麻——智能零售结算平台”能够精准地定位识别每一个商品,并且能够返回完整的购物清单及顾客应付的实际商品总价格。而当系统有新商品增加时,本系统只需更新检索库即可,无需重新训练模型。
本项目为轻量级通用图像识别系统PP-ShiTu提供了扎实的落地应用案例,对新零售行业中无人零售视觉化智能解决方案提供了非常好的基础和思路,尤其针对解决多类别、小样本、高相似和更新频繁的特殊图像识别场景痛难点提供了可参考的示范,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。
袋鼯麻麻——智能零售结算平台 基于PaddleClas作为主要的功能开发套件,利用其开源的PP-ShiTu进行核心功能的开发,并通过PaddleInference将其部署于Jetson Nano,并基于QPT打包.exe打通Windows系统,开发一套符合实际应用需求的工业级智能零售结算平台。
PP-ShiTu是一个实用的轻量级通用图像识别系统,主要由主体检测、特征学习和向量检索三个模块组成。该系统从骨干网络选择和调整、损失函数的选择、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型裁剪量化8个方面,采用多种策略,对各个模块的模型进行优化,最终得到在CPU上仅0.2s即可完成10w+库的图像识别的系统。
整个图像识别系统分为三步(详情见PP-ShiTu训练模块):
(1)通过一个目标检测模型,检测图像物体候选区域;
(2)对每个候选区域进行特征提取;
(3)与检索库中图像进行特征匹配,提取识别结果。
对于新的未知类别,无需重新训练模型,只需要在检索库补入该类别图像,重新建立检索库,就可以识别该类别。
【The first one】:Products-10K Large Scale Product Recognition Dataset
【The second one】:RP2K: A Large-Scale Retail Product Dataset for Fine-Grained Image Classification
袋鼯麻麻——智能购物平台基于上述两个数据集,结合爬虫,对此两种数据集进行适应性处理。
东古酱油一品鲜
东古黄豆酱750G
东鹏特饮罐装
中华(硬)
中华(软)
乳酸菌600亿_2
乳酸菌600亿_3
乳酸菌600亿原味
乳酸菌600亿芒果
乳酸菌600亿芦荟
...
目前处理后的数据集已在启智社区和飞桨AIStudio开源。
本项目已打通Jetson Nano、Windows、linux系统
Windows 端
[本项目提供了较为简单的demo演示版本]
使用QPT打包
链接:https://pan.baidu.com/s/194ApbJuDJWyV7tv5sCaGsg 提取码:wy7i
解压后运行启动程序.exe即可
Linux 端
Download本项目代码后,进入client文件夹内,执行以下代码即可运行:
python3 client.py
图像识别部分部署详情请见PP-ShiTu部署
微信小程序端
打开微信开发者工具,导入系统文件夹下AIContainer文件夹并运行,即可运行小程序端;
主界面
端侧界面
序号 | 完成度 | 优先级 | 分属类别 | 功能描述 |
---|---|---|---|---|
1 | 已完成 | ★★★★★ | 小程序 | |
2 | 在做了 | ★★★★★ | 小程序 | 初始功能上线 |
3 | 已完成 | ★★★★★ | 端侧 | |
4 | 规划中 | ★★★★ | 小程序 | 面向管理者及顾客的功能分离 |
5 | 已完成 | ★★★★ | web | |
6 | 规划中 | ★★★ | 小程序 | 接入PaddleOCR实现商品名称的自动录入 |
7 | 规划中 | ★★ | APP | Android and IOS 客户端的打通部署 |
职责 | 名单 |
---|---|
PM | 颜鑫 |
算法 | 颜鑫 |
端侧前端 | 颜鑫 |
小程序前端 | 沈晨 |
后端 | 杜旭东 |
一杯咖啡提神醒脑,产品更新会更快更好!
我们非常欢迎您为"袋鼯麻麻——智能零售结算平台"贡献代码或者提供使用建议。无论您是提出存在bug、修复某个bug或者增加一个新功能,欢迎给我们提交Issue or Pull Requests。
@software{ColugoMum2021,
author = {Xin Yan, Chen Shen and XuDong Du},
title = {ColugoMum: Intelligent Retail Settlement Platform},
howpublished = {\url{https://github.com/thomas-yanxin/Smart_container}},
year = {2021}
}
@misc{cui2021pplcnet,
title={PP-LCNet: A Lightweight CPU Convolutional Neural Network},
author={Cheng Cui and Tingquan Gao and Shengyu Wei and Yuning Du and Ruoyu Guo and Shuilong Dong and Bin Lu and Ying Zhou and Xueying Lv and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
year={2021},
eprint={2109.15099},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{yu2021pppicodet,
title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
year={2021},
eprint={2111.00902},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@article{peng2020rp2k,
title={RP2K: A Large-Scale Retail Product Dataset forFine-Grained Image Classification},
author={Peng, Jingtian and Xiao, Chang and Li, Yifan},
journal={arXiv preprint arXiv:2006.12634},
year={2020}
}
致力于为大型线下零售体验店提供基于视觉的零售结算方案
Python JavaScript Tcl Text CSS other
Dear OpenI User
Thank you for your continuous support to the Openl Qizhi Community AI Collaboration Platform. In order to protect your usage rights and ensure network security, we updated the Openl Qizhi Community AI Collaboration Platform Usage Agreement in January 2024. The updated agreement specifies that users are prohibited from using intranet penetration tools. After you click "Agree and continue", you can continue to use our services. Thank you for your cooperation and understanding.
For more agreement content, please refer to the《Openl Qizhi Community AI Collaboration Platform Usage Agreement》