Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
4 months ago | |
---|---|---|
ascend310_infer | 1 year ago | |
scripts | 1 year ago | |
src | 1 year ago | |
README.md | 4 months ago | |
create_imagenet2012_label.py | 1 year ago | |
eval.py | 1 year ago | |
export.py | 1 year ago | |
postprocess.py | 1 year ago | |
train.py | 1 year ago |
SE-ResNeXt是一个图像分类网络架构。作者注重于通道关系提出了Squeezeand-Excitation(SE)块,并在ResNeXt模型的基础上加入了该模块,提高了分类准确率。
论文 :Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu."Squeeze-and-Excitation Networks"
SE-ResNeXt的总体网络架构如下: 链接
使用的数据集:ImageNet-1k
采用混合精度 的训练方法,使用支持单精度和半精度数据来提高深度学习神经网络的训练速度,同时保持单精度训练所能达到的网络精度。混合精度训练提高计算速度、减少内存使用的同时,支持在特定硬件上训练更大的模型或实现更大批次的训练。
通过官方网站安装MindSpore后,您可以按照如下步骤进行训练和评估:
Ascend处理器环境运行
# 运行训练示例
python train.py --device_id=0 > train.log 2>&1 &
# 运行分布式训练示例
bash ./scripts/run_train.sh [RANK_TABLE_FILE] imagenet
# 运行评估示例
python eval.py --checkpoint_path ./ckpt_0 > ./eval.log 2>&1 &
# 运行推理示例
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
对于分布式训练,需要提前创建JSON格式的hccl配置文件。
请遵循以下链接中的说明:
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
├── model_zoo
├── README.md // 所有模型相关说明
├── SE-ResNeXt
├── README_CN.md // SE-ResNeXt相关说明
├── ascend310_infer // 实现310推理源代码
├── scripts
│ ├──run_eval.sh // Ascend评估的shell脚本
│ ├──run_infer_310.sh // Ascend推理的shell脚本
│ ├──run_train.sh // 分布式到Ascend的shell脚本
├── src
│ ├──config.py // 参数配置
│ ├──dataset.py // 创建数据集
│ ├──senet_ms.py // SE-ResNeXt架构
├── eval.py // 评估脚本
├── export.py // 将checkpoint文件导出到air/mindir
├── postprocess.py // 310推理后处理脚本
├── train.py // 训练脚本
在config.py中可以同时配置训练参数和评估参数。
配置SE-ResNeXt和ImageNet-1k数据集。
'name':'imagenet' # 数据集
'pre_trained':'False' # 是否基于预训练模型训练
'num_classes':1000 # 数据集类数
'lr_init':0.4 # 初始学习率,八卡并行训练时设置为0.4,单卡训练时可以设置为0.05
'batch_size':128 # 训练批次大小
'epoch_size':120 # 总计训练epoch数
'momentum':0.9 # 动量
'weight_decay':1e-4 # 权重衰减值
'image_height':224 # 输入到模型的图像高度
'image_width':224 # 输入到模型的图像宽度
'data_path':'/data/ILSVRC2012_train/' # 训练数据集的绝对全路径
'val_data_path':'/data/ILSVRC2012_val/' # 评估数据集的绝对全路径
'device_target':'Ascend' # 运行设备
'device_id':0 # 用于训练或评估数据集的设备ID,使用run_train.sh进行分布式训练时可以忽略
'keep_checkpoint_max':30 # 最多保存30个ckpt模型文件
'checkpoint_path':'./train_parallel6/ckpt_6/train_senet_imagenet-110_1251.ckpt' # checkpoint文件保存的绝对全路径
更多配置细节请参考脚本config.py
。
Ascend处理器环境运行
python train.py --device_id=0 > train.log 2>&1 &
上述python命令将在后台运行,可以通过生成的train.log或log文件查看结果。
训练结束后,可以在默认脚本文件夹下找到检查点文件,采用以下方式得到损失值:
# grep "loss is " train.log
...
epoch: 22 step: 1251, loss is 2.7866466
epoch: 23 step: 1251, loss is 2.7370944
...
Ascend处理器环境运行
bash ./scripts/run_train.sh [RANK_TABLE_FILE] imagenet
上述shell脚本将在后台运行分布训练。
在Ascend环境运行时评估ImageNet-1k数据集
“./ckpt_0”是保存了训练好的.ckpt模型文件的目录。
python eval.py --checkpoint_path ./ckpt_0 > ./eval.log 2>&1 &
OR
bash ./scripts/run_eval.sh
将checkpoint文件导出成mindir格式模型。
python export.py --ckpt_file [CKPT_FILE]
在进行推理之前我们需要先导出模型。mindir可以在任意环境上导出,air模型只能在昇腾910环境上导出。以下展示了使用mindir模型执行推理的示例。
在昇腾310上使用ImageNet-1k数据集进行推理
推理的结果保存在scripts目录下,在acc.log日志文件中可以找到类似以下的结果。
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
Total data: 50000, top1 accuracy: 0.79388, top5 accuracy: 0.94522.
参数 | Ascend |
---|---|
模型版本 | SE-ResNeXt |
资源 | Ascend 910 |
上传日期 | 2021-07-31 |
MindSpore版本 | 1.2.0 |
数据集 | ImageNet-1k,5万张图像 |
训练参数 | epoch=120, batch_size=128, lr_init=0.4(八卡为0.4,单卡可以设为0.05) |
优化器 | Momentum |
损失函数 | Softmax交叉熵 |
输出 | 概率 |
分类准确率 | 八卡:top1:79.38%, top5:94.51% |
速度 | 八卡:435毫秒/步 |
总时长 | 八卡:18.34小时/120轮 |
参数 | Ascend |
---|---|
模型版本 | SE-ResNeXt |
资源 | Ascend 310 |
上传日期 | 2021-07-31 |
MindSpore版本 | 1.2.0 |
数据集 | ImageNet-1k,5万张图像 |
分类准确率 | top1:79.39%,top5:94.52% |
速度 | Average time 15.1009 ms of infer_count 50000 |
请浏览官网主页。