Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
2 months ago | |
---|---|---|
.github | 11 months ago | |
docs | 4 months ago | |
examples | 2 months ago | |
openhgnn | 2 months ago | |
space4hgnn | 1 year ago | |
tests | 4 months ago | |
.gitignore | 10 months ago | |
.readthedocs.yaml | 10 months ago | |
CONTRIBUTING.md | 1 year ago | |
LICENSE | 1 year ago | |
MANIFEST.in | 1 year ago | |
README.md | 2 months ago | |
README_EN.md | 2 months ago | |
main.py | 4 months ago | |
requirements.txt | 1 year ago | |
setup.py | 4 months ago | |
space4hgnn.py | 1 year ago | |
yunnao_tutotial.md | 1 year ago |
启智社区(中文版)| Github Community (English) |**Space4HGNN [SIGIR2022]** |Benchmark&Leaderboard | Slack Channel
OpenHGNN是一个基于 DGL [Deep Graph Library] 和 PyTorch 的开源异质图神经网络工具包,集成了异质图神经网络的前沿模型。
算法库支撑了北邮牵头,蚂蚁集团、中国移动、海致科技等参与的“大规模复杂异质图数据智能分析技术与规模化应用”项目。该项目获得了2022年电子学会科技进步一等奖。
我们开源了0.4版本。
我们的论文 OpenHGNN: An Open Source Toolkit for Heterogeneous Graph Neural Network 在CIKM2022 short paper track接收。
我们开源了0.3版本。
我们开源了0.2版本。
1. Python 环境 (可选): 推荐使用 Conda 包管理
conda create -n openhgnn python=3.6
source activate openhgnn
2. 安装Pytorch: 参考 PyTorch安装文档 根据你的操作系统和CUDA版本选择合适的安装命令。例如:
pip install torch torchvision torchaudio
3. 安装DGL: 参考 DGL安装文档 根据你的操作系统和CUDA版本选择合适的安装命令。例如:
pip install dgl -f https://data.dgl.ai/wheels/repo.html
4. 安装 openhgnn:
pip install openhgnn
git clone https://github.com/BUPT-GAMMA/OpenHGNN
# If you encounter a network error, try git clone from openi as following.
# git clone https://git.openi.org.cn/GAMMALab/OpenHGNN.git
cd OpenHGNN
pip install .
python main.py -m model_name -d dataset_name -t task_name -g 0 --use_best_config --load_from_pretrained
使用方法: main.py [-h] [--model MODEL] [--task TASK] [--dataset DATASET]
[--gpu GPU] [--use_best_config]
可选参数:
-h, --help
展示帮助信息并退出
--model -m
模型名
--task -t
任务名
--dataset -d
数据集名
--gpu -g
控制你使用哪一个GPU,如果没有GPU,设定 -g -1。
--use_best_config
use_best_config 意味着你使用该模型在该数据集下最优的配置,如果你想要设定不同的超参数,请手动修改 配置文件。使用最佳配置会覆盖配置文件中的参数。
--load_from_pretrained
从默认检查点加载模型。
示例:
python main.py -m GTN -d imdb4GTN -t node_classification -g 0 --use_best_config
提示: 如果你对某个模型感兴趣,你可以参考下列的模型列表。
请参考 文档 了解更多的基础和进阶的使用方法。
表格中的链接给出了模型的基本使用方法.
模型 | 节点分类 | 链路预测 | 推荐 |
---|---|---|---|
TransE[NIPS 2013] | ✔️ | ||
TransH[AAAI 2014] | ✔️ | ||
TransR[AAAI 2015] | ✔️ | ||
TransD[ACL 2015] | ✔️ | ||
Metapath2vec[KDD 2017] | ✔️ | ||
RGCN[ESWC 2018] | ✔️ | ✔️ | |
HERec[TKDE 2018] | ✔️ | ||
HAN[WWW 2019] | ✔️ | ✔️ | |
KGCN[WWW 2019] | ✔️ | ||
HetGNN[KDD 2019] | ✔️ | ✔️ | |
HeGAN[KDD 2019] | ✔️ | ||
HGAT[EMNLP 2019] | |||
GTN[NeurIPS 2019] & fastGTN | ✔️ | ||
RSHN[ICDM 2019] | ✔️ | ✔️ | |
GATNE-T[KDD 2019] | ✔️ | ||
DMGI[AAAI 2020] | ✔️ | ||
MAGNN[WWW 2020] | ✔️ | ||
HGT[WWW 2020] | |||
CompGCN[ICLR 2020] | ✔️ | ✔️ | |
NSHE[IJCAI 2020] | ✔️ | ||
NARS[arxiv] | ✔️ | ||
MHNF[arxiv] | ✔️ | ||
HGSL[AAAI 2021] | ✔️ | ||
HGNN-AC[WWW 2021] | ✔️ | ||
HeCo[KDD 2021] | ✔️ | ||
SimpleHGN[KDD 2021] | ✔️ | ||
HPN[TKDE 2021] | ✔️ | ✔️ | |
RHGNN[arxiv] | ✔️ | ||
HDE[ICDM 2021] | ✔️ | ||
HetSANN[AAAI 2020] | ✔️ | ||
ieHGCN[TKDE 2021] | ✔️ |
OpenHGNN团队[北邮 GAMMA 实验室]、DGL 团队和鹏城实验室。
欢迎在您的工作中用如下的方式引用OpenHGNN:
@inproceedings{han2022openhgnn,
title={OpenHGNN: An Open Source Toolkit for Heterogeneous Graph Neural Network},
author={Hui Han, Tianyu Zhao, Cheng Yang, Hongyi Zhang, Yaoqi Liu, Xiao Wang, Chuan Shi},
booktitle={CIKM},
year={2022}
}
OpenHGNN是由北邮GAMMA Lab开发的基于PyTorch和DGL的开源异质图神经网络工具包。
Python Markdown Shell