Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
lyb 0e4bde8384 | 2 years ago | |
---|---|---|
case | 2 years ago | |
courseware | 2 years ago | |
README.md | 2 years ago |
本实验介绍模型的训练操作,包括训练过程中关键模块的基本构件和训练流程的实现,并且介绍了基于MindSpore深度学习框架实现上述操作,通过学习,希望大家能掌握如下:
Jupyter Notebook开发环境,软件环境numpy、mindspore 1.7.0、python 3.7.5、matplotlib、mindvision。
本次关键模块的基本构建实验包括超参数的设定、损失函数、优化器以及评价指标的定义,详情见notebook。通过实验,希望同学们能够了解模型训练涉及的关键模块及其作用,同时掌握使用MindSpore深度学习框架对关键模块进行定义的方法。
经过学习我们已经了解模型训练的一般流程,下面我们将训练一个LeNet-5网络实现手写数字识别,以此来熟悉在MindSpore框架下进行模型训练的方法。
本实验中,模型训练分为以下步骤进行:
No Description
Jupyter Notebook Unity3D Asset
Dear OpenI User
Thank you for your continuous support to the Openl Qizhi Community AI Collaboration Platform. In order to protect your usage rights and ensure network security, we updated the Openl Qizhi Community AI Collaboration Platform Usage Agreement in January 2024. The updated agreement specifies that users are prohibited from using intranet penetration tools. After you click "Agree and continue", you can continue to use our services. Thank you for your cooperation and understanding.
For more agreement content, please refer to the《Openl Qizhi Community AI Collaboration Platform Usage Agreement》