|
- """
- from https://github.com/openai/gpt-2/, changed for chinese
- """
- import json
- import os
- import sentencepiece as spm
-
- """
- SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation
- systems where the vocabulary size is predetermined prior to the neural model training. SentencePiece implements
- subword units (e.g., byte-pair-encoding (BPE) [Sennrich et al.]) and unigram language model [Kudo.]) with the
- extension of direct training from raw sentences. SentencePiece allows us to make a purely end-to-end
- system that does not depend on language-specific pre/postprocessing.
- https://github.com/google/sentencepiece
-
- pip install sentencepiece
-
- or git clone https://github.com/google/sentencepiece.git
- python setup.py install
-
- """
- PRETRAINED_MODEL_FILE = "chinese_sentencepiece/cog-pretrain.model"
-
-
- def get_pairs(word):
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- return pairs
-
-
- class Encoder:
- def __init__(self, encoder, bpe_merges):
- self.encoder = encoder
- self.decoder = {v: k for k, v in self.encoder.items()}
- self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
- self.cache = {}
- self.max_len = 0
-
- def bpe(self, token):
- if token in self.cache:
- return self.cache[token]
- word = tuple(token)
- pairs = get_pairs(word)
- if not pairs:
- return token
-
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- new_word.extend(word[i:j])
- i = j
- except:
- new_word.extend(word[i:])
- break
-
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = ' '.join(word)
- self.cache[token] = word
- return word
-
- def encode(self, text):
- return [self.encoder.get(token, 1) for token in self.tokenize(text)]
-
- def decode(self, tokens):
- text = ''.join([self.decoder[token] for token in tokens])
- return text
-
- def tokenize(self, text):
- bpe_tokens = []
- bpe_tokens.extend(bpe_token for bpe_token in self.bpe(text).split(' '))
- return bpe_tokens
-
- def convert_tokens_to_ids(self, tokens):
- return [self.encoder.get(token, 1) for token in tokens]
-
-
- class Encoder_SP:
- def __init__(self, model_path):
- self.sp = spm.SentencePieceProcessor()
- self.sp.Load(model_path)
-
- def encode(self, text):
- """
- text="...."
- """
- return self.sp.EncodeAsIds(text)
-
- def decode(self, tokens):
- """
- tokens=[x1,x2,...]
- """
- text = [int(token) for token in tokens]
- # print(text)
- return self.sp.DecodeIds(text)
-
- def tokenize(self, text):
- return self.sp.EncodeAsPieces(text)
-
- def convert_tokens_to_ids(self, tokens):
- return [self.sp.PieceToId(token) for token in tokens]
-
- def convert_token_to_id(self, token):
- return self.sp.PieceToId(token)
-
- def convert_id_to_token(self, idx):
- return self.sp.IdToPiece(idx)
-
-
- def get_encoder(encoder_file, bpe_file):
- # 以下是为了同一个函数入兼容sentencepiece
- filepath, filename = os.path.split(encoder_file)
- shotname, extension = os.path.splitext(filename)
-
- if (".model" == extension) and (bpe_file == ""):
- return Encoder_SP(encoder_file)
- else:
- with open(encoder_file, 'r', encoding="utf-8") as f:
- encoder = json.load(f)
- with open(bpe_file, 'r', encoding="utf-8") as f:
- bpe_data = f.read()
- bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
- return Encoder(
- encoder=encoder,
- bpe_merges=bpe_merges,
- )
-
-
- def from_pretrained():
- return get_encoder(PRETRAINED_MODEL_FILE, "")
|