|
- # This file is provided as is from:
- # https://github.com/huggingface/pytorch-pretrained-BERT
- # Please refer to their repository for copyright.
-
- """
- Utilities for working with the local dataset cache.
- This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
- Copyright by the AllenNLP authors.
- """
- from __future__ import (absolute_import, division, print_function, unicode_literals)
-
- import json
- import logging
- import os
- import shutil
- import tempfile
- from functools import wraps
- from hashlib import sha256
- import sys
- from io import open
-
- import boto3
- import requests
- from botocore.exceptions import ClientError
- from tqdm import tqdm
-
- try:
- from urllib.parse import urlparse
- except ImportError:
- from urlparse import urlparse
-
- try:
- from pathlib import Path
- PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
- Path.home() / '.pytorch_pretrained_bert'))
- except (AttributeError, ImportError):
- PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
- os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_bert'))
-
- logger = logging.getLogger(__name__) # pylint: disable=invalid-name
-
-
- def url_to_filename(url, etag=None):
- """
- Convert `url` into a hashed filename in a repeatable way.
- If `etag` is specified, append its hash to the url's, delimited
- by a period.
- """
- url_bytes = url.encode('utf-8')
- url_hash = sha256(url_bytes)
- filename = url_hash.hexdigest()
-
- if etag:
- etag_bytes = etag.encode('utf-8')
- etag_hash = sha256(etag_bytes)
- filename += '.' + etag_hash.hexdigest()
-
- return filename
-
-
- def filename_to_url(filename, cache_dir=None):
- """
- Return the url and etag (which may be ``None``) stored for `filename`.
- Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
- """
- if cache_dir is None:
- cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
- if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
- cache_dir = str(cache_dir)
-
- cache_path = os.path.join(cache_dir, filename)
- if not os.path.exists(cache_path):
- raise EnvironmentError("file {} not found".format(cache_path))
-
- meta_path = cache_path + '.json'
- if not os.path.exists(meta_path):
- raise EnvironmentError("file {} not found".format(meta_path))
-
- with open(meta_path, encoding="utf-8") as meta_file:
- metadata = json.load(meta_file)
- url = metadata['url']
- etag = metadata['etag']
-
- return url, etag
-
-
- def cached_path(url_or_filename, cache_dir=None):
- """
- Given something that might be a URL (or might be a local path),
- determine which. If it's a URL, download the file and cache it, and
- return the path to the cached file. If it's already a local path,
- make sure the file exists and then return the path.
- """
- if cache_dir is None:
- cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
- if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
- url_or_filename = str(url_or_filename)
- if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
- cache_dir = str(cache_dir)
-
- parsed = urlparse(url_or_filename)
-
- if parsed.scheme in ('http', 'https', 's3'):
- # URL, so get it from the cache (downloading if necessary)
- return get_from_cache(url_or_filename, cache_dir)
- elif os.path.exists(url_or_filename):
- # File, and it exists.
- return url_or_filename
- elif parsed.scheme == '':
- # File, but it doesn't exist.
- raise EnvironmentError("file {} not found".format(url_or_filename))
- else:
- # Something unknown
- raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
-
-
- def split_s3_path(url):
- """Split a full s3 path into the bucket name and path."""
- parsed = urlparse(url)
- if not parsed.netloc or not parsed.path:
- raise ValueError("bad s3 path {}".format(url))
- bucket_name = parsed.netloc
- s3_path = parsed.path
- # Remove '/' at beginning of path.
- if s3_path.startswith("/"):
- s3_path = s3_path[1:]
- return bucket_name, s3_path
-
-
- def s3_request(func):
- """
- Wrapper function for s3 requests in order to create more helpful error
- messages.
- """
-
- @wraps(func)
- def wrapper(url, *args, **kwargs):
- try:
- return func(url, *args, **kwargs)
- except ClientError as exc:
- if int(exc.response["Error"]["Code"]) == 404:
- raise EnvironmentError("file {} not found".format(url))
- else:
- raise
-
- return wrapper
-
-
- @s3_request
- def s3_etag(url):
- """Check ETag on S3 object."""
- s3_resource = boto3.resource("s3")
- bucket_name, s3_path = split_s3_path(url)
- s3_object = s3_resource.Object(bucket_name, s3_path)
- return s3_object.e_tag
-
-
- @s3_request
- def s3_get(url, temp_file):
- """Pull a file directly from S3."""
- s3_resource = boto3.resource("s3")
- bucket_name, s3_path = split_s3_path(url)
- s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
-
-
- def http_get(url, temp_file):
- req = requests.get(url, stream=True)
- content_length = req.headers.get('Content-Length')
- total = int(content_length) if content_length is not None else None
- progress = tqdm(unit="B", total=total)
- for chunk in req.iter_content(chunk_size=1024):
- if chunk: # filter out keep-alive new chunks
- progress.update(len(chunk))
- temp_file.write(chunk)
- progress.close()
-
-
- def get_from_cache(url, cache_dir=None):
- """
- Given a URL, look for the corresponding dataset in the local cache.
- If it's not there, download it. Then return the path to the cached file.
- """
- if cache_dir is None:
- cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
- if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
- cache_dir = str(cache_dir)
-
- if not os.path.exists(cache_dir):
- os.makedirs(cache_dir)
-
- # Get eTag to add to filename, if it exists.
- if url.startswith("s3://"):
- etag = s3_etag(url)
- else:
- response = requests.head(url, allow_redirects=True)
- if response.status_code != 200:
- raise IOError("HEAD request failed for url {} with status code {}"
- .format(url, response.status_code))
- etag = response.headers.get("ETag")
-
- filename = url_to_filename(url, etag)
-
- # get cache path to put the file
- cache_path = os.path.join(cache_dir, filename)
-
- if not os.path.exists(cache_path):
- # Download to temporary file, then copy to cache dir once finished.
- # Otherwise you get corrupt cache entries if the download gets interrupted.
- with tempfile.NamedTemporaryFile() as temp_file:
- logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
-
- # GET file object
- if url.startswith("s3://"):
- s3_get(url, temp_file)
- else:
- http_get(url, temp_file)
-
- # we are copying the file before closing it, so flush to avoid truncation
- temp_file.flush()
- # shutil.copyfileobj() starts at the current position, so go to the start
- temp_file.seek(0)
-
- logger.info("copying %s to cache at %s", temp_file.name, cache_path)
- with open(cache_path, 'wb') as cache_file:
- shutil.copyfileobj(temp_file, cache_file)
-
- logger.info("creating metadata file for %s", cache_path)
- meta = {'url': url, 'etag': etag}
- meta_path = cache_path + '.json'
- with open(meta_path, 'w', encoding="utf-8") as meta_file:
- json.dump(meta, meta_file)
-
- logger.info("removing temp file %s", temp_file.name)
-
- return cache_path
-
-
- def read_set_from_file(filename):
- '''
- Extract a de-duped collection (set) of text from a file.
- Expected file format is one item per line.
- '''
- collection = set()
- with open(filename, 'r', encoding='utf-8') as file_:
- for line in file_:
- collection.add(line.rstrip())
- return collection
-
-
- def get_file_extension(path, dot=True, lower=True):
- ext = os.path.splitext(path)[1]
- ext = ext if dot else ext[1:]
- return ext.lower() if lower else ext
|