|
- # coding=utf-8
- # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch BERT model."""
-
- from __future__ import absolute_import, division, print_function, unicode_literals
-
- import os
- import copy
- import json
- import math
- import logging
- import tarfile
- import tempfile
- import shutil
-
- import torch
- from torch import nn
- import torch.nn.functional as F
- from torch.nn import CrossEntropyLoss
-
- # from torch.utils.checkpoint import checkpoint
-
- from data_utils.file_utils import cached_path
-
- import mpu
-
-
- def normal_init_method(mean, std):
- def init_(tensor):
- return torch.nn.init.normal_(tensor, mean=mean, std=std)
-
- return init_
-
-
- def scaled_init_method(mean, std, num_layers):
- """Init method based on N(0, sigma/sqrt(2*num_layers)."""
- std = std / math.sqrt(2.0 * num_layers)
-
- def init_(tensor):
- return torch.nn.init.normal_(tensor, mean=mean, std=std)
-
- return init_
-
-
- def bert_extended_attention_mask(attention_mask):
- # We create a 3D attention mask from a 2D tensor mask.
- # [b, 1, s]
- attention_mask_b1s = attention_mask.unsqueeze(1)
- # [b, s, 1]
- attention_mask_bs1 = attention_mask.unsqueeze(2)
- # [b, s, s]
- attention_mask_bss = attention_mask_b1s * attention_mask_bs1
- # [b, 1, s, s]
- extended_attention_mask = attention_mask_bss.unsqueeze(1)
-
- return extended_attention_mask
-
-
- logger = logging.getLogger(__name__)
- logger.setLevel(logging.INFO)
-
- PRETRAINED_MODEL_ARCHIVE_MAP = {
- 'bert-base-uncased': "/root/data/bert-base-uncased.tar.gz",
- 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
- 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
- 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
- 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
- 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
- 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
- }
- CONFIG_NAME = 'bert_config.json'
- WEIGHTS_NAME = 'pytorch_model.bin'
- TF_WEIGHTS_NAME = 'model.ckpt'
-
-
- def load_tf_weights_in_bert(model, tf_checkpoint_path):
- """ Load tf checkpoints in a pytorch model
- """
- try:
- import re
- import numpy as np
- import tensorflow as tf
- except ImportError:
- print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions.")
- raise
- tf_path = os.path.abspath(tf_checkpoint_path)
- print("Converting TensorFlow checkpoint from {}".format(tf_path))
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- names = []
- arrays = []
- for name, shape in init_vars:
- print("Loading TF weight {} with shape {}".format(name, shape))
- array = tf.train.load_variable(tf_path, name)
- names.append(name)
- arrays.append(array)
-
- for name, array in zip(names, arrays):
- name = name.split('/')
- # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
- # which are not required for using pretrained model
- if any(n in ["adam_v", "adam_m"] for n in name):
- print("Skipping {}".format("/".join(name)))
- continue
- pointer = model
- for m_name in name:
- if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
- l = re.split(r'_(\d+)', m_name)
- else:
- l = [m_name]
- if l[0] == 'kernel' or l[0] == 'gamma':
- pointer = getattr(pointer, 'weight')
- elif l[0] == 'output_bias' or l[0] == 'beta':
- pointer = getattr(pointer, 'bias')
- elif l[0] == 'output_weights':
- pointer = getattr(pointer, 'weight')
- else:
- pointer = getattr(pointer, l[0])
- if len(l) >= 2:
- num = int(l[1])
- pointer = pointer[num]
- if m_name[-11:] == '_embeddings':
- pointer = getattr(pointer, 'weight')
- elif m_name == 'kernel':
- array = np.transpose(array)
- try:
- assert pointer.shape == array.shape
- except AssertionError as e:
- e.args += (pointer.shape, array.shape)
- raise
- print("Initialize PyTorch weight {}".format(name))
- pointer.data = torch.from_numpy(array)
- return model
-
-
- def gelu(x):
- """Implementation of the gelu activation function.
- For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
- 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
- """
- return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
-
-
- def swish(x):
- return x * torch.sigmoid(x)
-
-
- ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
-
-
- class BertConfig(object):
- """Configuration class to store the configuration of a `BertModel`.
- """
-
- def __init__(self,
- vocab_size_or_config_json_file,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=2,
- initializer_range=0.02,
- deep_init=False,
- fp32_layernorm=False,
- fp32_embedding=False,
- fp32_tokentypes=False,
- layernorm_epsilon=1e-12):
- """Constructs BertConfig.
-
- Args:
- vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
- hidden_size: Size of the encoder layers and the pooler layer.
- num_hidden_layers: Number of hidden layers in the Transformer encoder.
- num_attention_heads: Number of attention heads for each attention layer in
- the Transformer encoder.
- intermediate_size: The size of the "intermediate" (i.e., feed-forward)
- layer in the Transformer encoder.
- hidden_act: The non-linear activation function (function or string) in the
- encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
- hidden_dropout_prob: The dropout probabilitiy for all fully connected
- layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob: The dropout ratio for the attention
- probabilities.
- max_position_embeddings: The maximum sequence length that this model might
- ever be used with. Typically set this to something large just in case
- (e.g., 512 or 1024 or 2048).
- type_vocab_size: The vocabulary size of the `token_type_ids` passed into
- `BertModel`.
- initializer_range: The sttdev of the truncated_normal_initializer for
- initializing all weight matrices.
- """
- if isinstance(vocab_size_or_config_json_file, str):
- with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
- json_config = json.loads(reader.read())
- for key, value in json_config.items():
- self.__dict__[key] = value
- elif isinstance(vocab_size_or_config_json_file, int):
- self.vocab_size = vocab_size_or_config_json_file
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.hidden_act = hidden_act
- self.intermediate_size = intermediate_size
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
- self.deep_init = deep_init
- self.fp32_layernorm = fp32_layernorm
- self.fp32_embedding = fp32_embedding
- self.layernorm_epsilon = layernorm_epsilon
- self.fp32_tokentypes = fp32_tokentypes
- else:
- raise ValueError("First argument must be either a vocabulary size (int)"
- "or the path to a pretrained model config file (str)")
-
- @classmethod
- def from_dict(cls, json_object):
- """Constructs a `BertConfig` from a Python dictionary of parameters."""
- config = BertConfig(vocab_size_or_config_json_file=-1)
- for key, value in json_object.items():
- config.__dict__[key] = value
- return config
-
- @classmethod
- def from_json_file(cls, json_file):
- """Constructs a `BertConfig` from a json file of parameters."""
- with open(json_file, "r", encoding='utf-8') as reader:
- text = reader.read()
- return cls.from_dict(json.loads(text))
-
- def __repr__(self):
- return str(self.to_json_string())
-
- def to_dict(self):
- """Serializes this instance to a Python dictionary."""
- output = copy.deepcopy(self.__dict__)
- return output
-
- def to_json_string(self):
- """Serializes this instance to a JSON string."""
- return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
-
-
- try:
- from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
- except ImportError:
- print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
-
-
- class BertLayerNorm(nn.Module):
- def __init__(self, hidden_size, eps=1e-12):
- """Construct a layernorm module in the TF style (epsilon inside the square root).
- """
- super(BertLayerNorm, self).__init__()
- self.weight = nn.Parameter(torch.ones(hidden_size))
- self.bias = nn.Parameter(torch.zeros(hidden_size))
- self.variance_epsilon = eps
-
- def forward(self, x):
- u = x.mean(-1, keepdim=True)
- s = (x - u).pow(2).mean(-1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.variance_epsilon)
- return self.weight * x + self.bias
-
-
- class BertEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings.
- """
-
- def __init__(self, config):
- super(BertEmbeddings, self).__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
- # self.word_embeddings = mpu.VocabParallelEmbedding(
- # config.vocab_size, config.hidden_size,
- # init_method=normal_init_method(mean=0.0,
- # std=config.initializer_range))
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
-
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.fp32_layernorm = config.fp32_layernorm
- self.fp32_embedding = config.fp32_embedding
- self.fp32_tokentypes = config.fp32_tokentypes
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
-
- def forward(self, input_ids, token_type_ids=None):
- seq_length = input_ids.size(1)
- position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
- position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
- if token_type_ids is None:
- token_type_ids = torch.zeros_like(input_ids)
-
- words_embeddings = self.word_embeddings(input_ids)
- position_embeddings = self.position_embeddings(position_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- if not self.fp32_tokentypes:
-
- embeddings = words_embeddings + position_embeddings + token_type_embeddings
- if self.fp32_embedding and not self.fp32_layernorm:
- embeddings = embeddings.half()
- previous_type = embeddings.type()
- if self.fp32_layernorm:
- embeddings = embeddings.float()
- embeddings = self.LayerNorm(embeddings)
- if self.fp32_layernorm:
- if self.fp32_embedding:
- embeddings = embeddings.half()
- else:
- embeddings = embeddings.type(previous_type)
- else:
- embeddings = words_embeddings.float() + position_embeddings.float() + token_type_embeddings.float()
- if self.fp32_tokentypes and not self.fp32_layernorm:
- embeddings = embeddings.half()
- previous_type = embeddings.type()
- if self.fp32_layernorm:
- embeddings = embeddings.float()
- embeddings = self.LayerNorm(embeddings)
- if self.fp32_layernorm:
- if self.fp32_tokentypes:
- embeddings = embeddings.half()
- else:
- embeddings = embeddings.type(previous_type)
- embeddings = self.dropout(embeddings)
- return embeddings
-
-
- class BertSelfAttention(nn.Module):
- def __init__(self, config):
- super(BertSelfAttention, self).__init__()
- if config.hidden_size % config.num_attention_heads != 0:
- raise ValueError(
- "The hidden size (%d) is not a multiple of the number of attention "
- "heads (%d)" % (config.hidden_size, config.num_attention_heads))
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
-
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
-
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
-
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
-
- def forward(self, hidden_states, attention_mask):
- mixed_query_layer = self.query(hidden_states)
- mixed_key_layer = self.key(hidden_states)
- mixed_value_layer = self.value(hidden_states)
-
- query_layer = self.transpose_for_scores(mixed_query_layer)
- key_layer = self.transpose_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
-
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
- attention_scores = attention_scores + attention_mask
-
- # Normalize the attention scores to probabilities.
- attention_probs = nn.Softmax(dim=-1)(attention_scores)
-
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
-
- previous_type = attention_probs.type()
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(*new_context_layer_shape)
- return context_layer
-
-
- class BertSelfOutput(nn.Module):
- def __init__(self, config):
- super(BertSelfOutput, self).__init__()
- if hasattr(config, 'deep_init') and config.deep_init:
- init_method = scaled_init_method(mean=0.0,
- std=config.initializer_range,
- num_layers=config.num_hidden_layers)
- else:
- init_method = normal_init_method(mean=0.0,
- std=config.initializer_range)
- self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
- # self.dense = mpu.RowParallelLinear(
- # input_size=config.hidden_size,
- # output_size=config.hidden_size,
- # bias=True,
- # input_is_parallel=True,
- # stride=1,
- # init_method=init_method)
- self.fp32_layernorm = config.fp32_layernorm
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
-
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- ln_input = hidden_states + input_tensor
- previous_type = ln_input.type()
- if self.fp32_layernorm:
- ln_input = ln_input.float()
- hidden_states = self.LayerNorm(ln_input)
- if self.fp32_layernorm:
- hidden_states = hidden_states.type(previous_type)
- return hidden_states
-
-
- class BertAttention(nn.Module):
- def __init__(self, config):
- super(BertAttention, self).__init__()
- self.self = BertSelfAttention(config)
- # self.self = mpu.BertParallelSelfAttention(
- # hidden_size=config.hidden_size,
- # num_attention_heads=config.num_attention_heads,
- # dropout_prob=config.attention_probs_dropout_prob,
- # output_parallel=True,
- # init_method=normal_init_method(mean=0.0,
- # std=config.initializer_range))
- self.output = BertSelfOutput(config)
-
- def forward(self, input_tensor, attention_mask):
- self_output = self.self(input_tensor, attention_mask)
- attention_output = self.output(self_output, input_tensor)
- return attention_output
-
-
- class BertIntermediate(nn.Module):
- def __init__(self, config):
- super(BertIntermediate, self).__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
- # self.dense = mpu.ColumnParallelLinear(
- # input_size=config.hidden_size,
- # output_size=config.intermediate_size,
- # bias=True,
- # gather_output=False,
- # stride=1,
- # init_method=normal_init_method(mean=0.0,
- # std=config.initializer_range))
- self.intermediate_act_fn = ACT2FN[config.hidden_act] \
- if isinstance(config.hidden_act, str) else config.hidden_act
-
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
-
-
- class BertOutput(nn.Module):
- def __init__(self, config):
- super(BertOutput, self).__init__()
- if hasattr(config, 'deep_init') and config.deep_init:
- init_method = scaled_init_method(mean=0.0,
- std=config.initializer_range,
- num_layers=config.num_hidden_layers)
- else:
- init_method = normal_init_method(mean=0.0,
- std=config.initializer_range)
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
- # self.dense = mpu.RowParallelLinear(
- # input_size=config.intermediate_size,
- # output_size=config.hidden_size,
- # bias=True,
- # input_is_parallel=True,
- # stride=1,
- # init_method=init_method)
- self.fp32_layernorm = config.fp32_layernorm
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
-
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- ln_input = hidden_states + input_tensor
- previous_type = ln_input.type()
- if self.fp32_layernorm:
- ln_input = ln_input.float()
- hidden_states = self.LayerNorm(ln_input)
- if self.fp32_layernorm:
- hidden_states = hidden_states.type(previous_type)
- return hidden_states
-
-
- class BertLayer(nn.Module):
- def __init__(self, config):
- super(BertLayer, self).__init__()
- self.attention = BertAttention(config)
- self.intermediate = BertIntermediate(config)
- self.output = BertOutput(config)
-
- def forward(self, hidden_states, attention_mask):
- attention_output = self.attention(hidden_states, attention_mask)
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
-
-
- class BertEncoder(nn.Module):
- def __init__(self, config):
- super(BertEncoder, self).__init__()
- # layer = BertLayer(config)
- # self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
- self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
-
- # def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
- # all_encoder_layers = []
- # for layer_module in self.layer:
- # hidden_states = layer_module(hidden_states, attention_mask)
- # if output_all_encoded_layers:
- # all_encoder_layers.append(hidden_states)
- # if not output_all_encoded_layers:
- # all_encoder_layers.append(hidden_states)
- # return all_encoder_layers
- def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, checkpoint_activations=False):
- all_encoder_layers = []
-
- def custom(start, end):
- def custom_forward(*inputs):
- layers = self.layer[start:end]
- x_ = inputs[0]
- for layer in layers:
- x_ = layer(x_, inputs[1])
- return x_
-
- return custom_forward
-
- if checkpoint_activations:
- l = 0
- num_layers = len(self.layer)
- chunk_length = 1 # math.ceil(math.sqrt(num_layers))
- while l < num_layers:
- hidden_states = mpu.checkpoint(custom(l, l + chunk_length), hidden_states, attention_mask * 1)
- l += chunk_length
- # decoder layers
- else:
- for i, layer_module in enumerate(self.layer):
- hidden_states = layer_module(hidden_states, attention_mask)
-
- if output_all_encoded_layers:
- all_encoder_layers.append(hidden_states)
-
- if not output_all_encoded_layers or checkpoint_activations:
- all_encoder_layers.append(hidden_states)
- return all_encoder_layers
-
-
- class BertPooler(nn.Module):
- def __init__(self, config):
- super(BertPooler, self).__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
-
- def forward(self, hidden_states):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
-
-
- class BertPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super(BertPredictionHeadTransform, self).__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.transform_act_fn = ACT2FN[config.hidden_act] \
- if isinstance(config.hidden_act, str) else config.hidden_act
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layernorm_epsilon)
- self.fp32_layernorm = config.fp32_layernorm
-
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- previous_type = hidden_states.type()
- if self.fp32_layernorm:
- hidden_states = hidden_states.float()
- hidden_states = self.LayerNorm(hidden_states)
- if self.fp32_layernorm:
- hidden_states = hidden_states.type(previous_type)
- return hidden_states
-
-
- class BertLMPredictionHead(nn.Module):
- def __init__(self, config, bert_model_embedding_weights):
- super(BertLMPredictionHead, self).__init__()
- self.transform = BertPredictionHeadTransform(config)
-
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
- bert_model_embedding_weights.size(0),
- bias=False)
- # self.decoder_weight = bert_model_embedding_weights
- # self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
- # self.bias.model_parallel = True
- self.fp32_embedding = config.fp32_embedding
- self.fp32_layernorm = config.fp32_layernorm
-
- def convert_to_type(tensor):
- if self.fp32_embedding:
- return tensor.half()
- else:
- return tensor
-
- self.type_converter = convert_to_type
- self.converted = False
-
- def forward(self, hidden_states):
- if not self.converted:
- self.converted = True
- if self.fp32_embedding:
- self.transform.half()
- if self.fp32_layernorm:
- self.transform.LayerNorm.float()
- hidden_states = self.transform(self.type_converter(hidden_states))
- hidden_states = self.decoder(hidden_states) + self.bias
- # hidden_states = mpu.copy_to_model_parallel_region(hidden_states)
- # hidden_states = F.linear(self.type_converter(hidden_states),
- # self.type_converter(self.decoder_weight),
- # self.type_converter(self.bias))
- return hidden_states
-
-
- class BertOnlyMLMHead(nn.Module):
- def __init__(self, config, bert_model_embedding_weights):
- super(BertOnlyMLMHead, self).__init__()
- self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
-
- def forward(self, sequence_output):
- prediction_scores = self.predictions(sequence_output)
- return prediction_scores
-
-
- class BertOnlyNSPHead(nn.Module):
- def __init__(self, config):
- super(BertOnlyNSPHead, self).__init__()
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
-
- def forward(self, pooled_output):
- seq_relationship_score = self.seq_relationship(pooled_output)
- return seq_relationship_score
-
-
- class BertPreTrainingHeads(nn.Module):
- def __init__(self, config, bert_model_embedding_weights):
- super(BertPreTrainingHeads, self).__init__()
- self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
-
- def forward(self, sequence_output, pooled_output):
- prediction_scores = self.predictions(sequence_output)
- for p in self.seq_relationship.parameters():
- if p is None:
- continue
- pooled_output = pooled_output.type_as(p)
- seq_relationship_score = self.seq_relationship(pooled_output)
- return prediction_scores, seq_relationship_score
-
-
- class PreTrainedBertModel(nn.Module):
- """ An abstract class to handle weights initialization and
- a simple interface for dowloading and loading pretrained models.
- """
-
- def __init__(self, config, *inputs, **kwargs):
- super(PreTrainedBertModel, self).__init__()
- if not isinstance(config, BertConfig):
- raise ValueError(
- "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
- "To create a model from a Google pretrained model use "
- "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
- self.__class__.__name__, self.__class__.__name__
- ))
- self.config = config
-
- def init_bert_weights(self, module):
- """ Initialize the weights.
- """
- if isinstance(module, (nn.Linear, nn.Embedding)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- elif isinstance(module, BertLayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- if isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
-
- @classmethod
- def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None,
- fp32_layernorm=False, fp32_embedding=False, layernorm_epsilon=1e-12,
- fp32_tokentypes=False, *inputs, **kwargs):
- """
- Instantiate a PreTrainedBertModel from a pre-trained model file or a pytorch state dict.
- Download and cache the pre-trained model file if needed.
-
- Params:
- pretrained_model_name: either:
- - a str with the name of a pre-trained model to load selected in the list of:
- . `bert-base-uncased`
- . `bert-large-uncased`
- . `bert-base-cased`
- . `bert-large-cased`
- . `bert-base-multilingual-uncased`
- . `bert-base-multilingual-cased`
- . `bert-base-chinese`
- - a path or url to a pretrained model archive containing:
- . `bert_config.json` a configuration file for the model
- . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
- cache_dir: an optional path to a folder in which the pre-trained models will be cached.
- state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
- *inputs, **kwargs: additional input for the specific Bert class
- (ex: num_labels for BertForSequenceClassification)
- """
- if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
- archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
- else:
- archive_file = pretrained_model_name
- # redirect to the cache, if necessary
- try:
- resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
- except FileNotFoundError:
- logger.error(
- "Model name '{}' was not found in model name list ({}). "
- "We assumed '{}' was a path or url but couldn't find any file "
- "associated to this path or url.".format(
- pretrained_model_name,
- ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
- archive_file))
- return None
- if resolved_archive_file == archive_file:
- logger.info("loading archive file {}".format(archive_file))
- else:
- logger.info("loading archive file {} from cache at {}".format(
- archive_file, resolved_archive_file))
- tempdir = None
- if os.path.isdir(resolved_archive_file):
- serialization_dir = resolved_archive_file
- else:
- # Extract archive to temp dir
- tempdir = tempfile.mkdtemp()
- logger.info("extracting archive file {} to temp dir {}".format(
- resolved_archive_file, tempdir))
- with tarfile.open(resolved_archive_file, 'r:gz') as archive:
- archive.extractall(tempdir)
- serialization_dir = tempdir
- # Load config
- config_file = os.path.join(serialization_dir, CONFIG_NAME)
- config = BertConfig.from_json_file(config_file)
- config.fp32_layernorm = fp32_layernorm
- config.fp32_embedding = fp32_embedding
- config.layernorm_epsilon = layernorm_epsilon
- config.fp32_tokentypes = fp32_tokentypes
- logger.info("Model config {}".format(config))
- # Instantiate model.
- model = cls(config, *inputs, **kwargs)
- if state_dict is None:
- weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
- state_dict = torch.load(weights_path)
-
- old_keys = []
- new_keys = []
- for key in state_dict.keys():
- new_key = None
- if 'gamma' in key:
- new_key = key.replace('gamma', 'weight')
- if 'beta' in key:
- new_key = key.replace('beta', 'bias')
- if new_key:
- old_keys.append(key)
- new_keys.append(new_key)
- for old_key, new_key in zip(old_keys, new_keys):
- state_dict[new_key] = state_dict.pop(old_key)
-
- missing_keys = []
- unexpected_keys = []
- error_msgs = []
- # copy state_dict so _load_from_state_dict can modify it
- metadata = getattr(state_dict, '_metadata', None)
- state_dict = state_dict.copy()
- if metadata is not None:
- state_dict._metadata = metadata
-
- def load(module, prefix=''):
- local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
- module._load_from_state_dict(
- state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
- for name, child in module._modules.items():
- if child is not None:
- load(child, prefix + name + '.')
-
- load(model, prefix='' if hasattr(model, 'bert') else 'bert.')
- if len(missing_keys) > 0:
- print("Weights of {} not initialized from pretrained model: {}".format(
- model.__class__.__name__, missing_keys))
- if len(unexpected_keys) > 0:
- print("Weights from pretrained model not used in {}: {}".format(
- model.__class__.__name__, unexpected_keys))
- if tempdir:
- # Clean up temp dir
- shutil.rmtree(tempdir)
- return model
-
-
- class BertModel(PreTrainedBertModel):
- """BERT model ("Bidirectional Embedding Representations from a Transformer").
-
- Params:
- config: a BertConfig class instance with the configuration to build a new model
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
-
- Outputs: Tuple of (encoded_layers, pooled_output)
- `encoded_layers`: controled by `output_all_encoded_layers` argument:
- - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
- of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
- encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
- to the last attention block of shape [batch_size, sequence_length, hidden_size],
- `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
- classifier pretrained on top of the hidden state associated to the first character of the
- input (`CLF`) to train on the Next-Sentence task (see BERT's paper).
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
-
- config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- model = modeling.BertModel(config=config)
- all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config):
- super(BertModel, self).__init__(config)
- self.embeddings = BertEmbeddings(config)
- self.encoder = BertEncoder(config)
- self.pooler = BertPooler(config)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True,
- checkpoint_activations=False):
- if attention_mask is None:
- attention_mask = torch.ones_like(input_ids)
- if token_type_ids is None:
- token_type_ids = torch.zeros_like(input_ids)
-
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
-
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and -10000.0 for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- extended_attention_mask = extended_attention_mask.to(
- dtype=next(self.encoder.parameters()).dtype) # fp16 compatibility
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
-
- embedding_output = self.embeddings(input_ids, token_type_ids)
- encoded_layers = self.encoder(embedding_output,
- extended_attention_mask,
- output_all_encoded_layers=output_all_encoded_layers,
- checkpoint_activations=checkpoint_activations)
- sequence_output = encoded_layers[-1]
- for p in self.pooler.parameters():
- if p is None:
- continue
- sequence_output = sequence_output.type_as(p)
- break
- pooled_output = self.pooler(sequence_output)
- if not output_all_encoded_layers or checkpoint_activations:
- encoded_layers = encoded_layers[-1]
- return encoded_layers, pooled_output
-
-
- class BertForPreTraining(PreTrainedBertModel):
- """BERT model with pre-training heads.
- This module comprises the BERT model followed by the two pre-training heads:
- - the masked language modeling head, and
- - the next sentence classification head.
-
- Params:
- config: a BertConfig class instance with the configuration to build a new model.
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
- with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
- is only computed for the labels set in [0, ..., vocab_size]
- `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
- with indices selected in [0, 1].
- 0 => next sentence is the continuation, 1 => next sentence is a random sentence.
-
- Outputs:
- if `masked_lm_labels` and `next_sentence_label` are not `None`:
- Outputs the total_loss which is the sum of the masked language modeling loss and the next
- sentence classification loss.
- if `masked_lm_labels` or `next_sentence_label` is `None`:
- Outputs a tuple comprising
- - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- - the next sentence classification logits of shape [batch_size, 2].
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
-
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- model = BertForPreTraining(config)
- masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config):
- super(BertForPreTraining, self).__init__(config)
- self.bert = BertModel(config)
- self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
- next_sentence_label=None, checkpoint_activations=False):
- sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
- output_all_encoded_layers=False,
- checkpoint_activations=checkpoint_activations)
- prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
-
- if masked_lm_labels is not None and next_sentence_label is not None:
- loss_fct = CrossEntropyLoss(ignore_index=-1)
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size).float(),
- masked_lm_labels.view(-1))
- next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2).float(), next_sentence_label.view(-1))
- total_loss = masked_lm_loss + next_sentence_loss
- return total_loss
- else:
- return prediction_scores, seq_relationship_score
-
-
- class BertForMaskedLM(PreTrainedBertModel):
- """BERT model with the masked language modeling head.
- This module comprises the BERT model followed by the masked language modeling head.
-
- Params:
- config: a BertConfig class instance with the configuration to build a new model.
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
- with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
- is only computed for the labels set in [0, ..., vocab_size]
-
- Outputs:
- if `masked_lm_labels` is not `None`:
- Outputs the masked language modeling loss.
- if `masked_lm_labels` is `None`:
- Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
-
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- model = BertForMaskedLM(config)
- masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config):
- super(BertForMaskedLM, self).__init__(config)
- self.bert = BertModel(config)
- self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
- checkpoint_activations=False):
- sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask,
- output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
- prediction_scores = self.cls(sequence_output)
-
- if masked_lm_labels is not None:
- loss_fct = CrossEntropyLoss(ignore_index=-1)
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
- return masked_lm_loss
- else:
- return prediction_scores
-
-
- class BertForNextSentencePrediction(PreTrainedBertModel):
- """BERT model with next sentence prediction head.
- This module comprises the BERT model followed by the next sentence classification head.
-
- Params:
- config: a BertConfig class instance with the configuration to build a new model.
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
- with indices selected in [0, 1].
- 0 => next sentence is the continuation, 1 => next sentence is a random sentence.
-
- Outputs:
- if `next_sentence_label` is not `None`:
- Outputs the total_loss which is the sum of the masked language modeling loss and the next
- sentence classification loss.
- if `next_sentence_label` is `None`:
- Outputs the next sentence classification logits of shape [batch_size, 2].
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
-
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- model = BertForNextSentencePrediction(config)
- seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config):
- super(BertForNextSentencePrediction, self).__init__(config)
- self.bert = BertModel(config)
- self.cls = BertOnlyNSPHead(config)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None,
- checkpoint_activations=False):
- _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
- output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
- seq_relationship_score = self.cls(pooled_output)
-
- if next_sentence_label is not None:
- loss_fct = CrossEntropyLoss(ignore_index=-1)
- next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
- return next_sentence_loss
- else:
- return seq_relationship_score
-
-
- class BertForSequenceClassification(PreTrainedBertModel):
- """BERT model for classification.
- This module is composed of the BERT model with a linear layer on top of
- the pooled output.
-
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
- `num_labels`: the number of classes for the classifier. Default = 2.
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
- with indices selected in [0, ..., num_labels].
-
- Outputs:
- if `labels` is not `None`:
- Outputs the CrossEntropy classification loss of the output with the labels.
- if `labels` is `None`:
- Outputs the classification logits of shape [batch_size, num_labels].
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
-
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- num_labels = 2
-
- model = BertForSequenceClassification(config, num_labels)
- logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config, num_labels=2):
- super(BertForSequenceClassification, self).__init__(config)
- self.num_labels = num_labels
- self.bert = BertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, num_labels)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
- _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False,
- checkpoint_activations=checkpoint_activations)
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
-
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- return loss
- else:
- return logits
-
-
- class BertForMultipleChoice(PreTrainedBertModel):
- """BERT model for multiple choice tasks.
- This module is composed of the BERT model with a linear layer on top of
- the pooled output.
-
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
- `num_choices`: the number of classes for the classifier. Default = 2.
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
- with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
- and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
- with indices selected in [0, ..., num_choices].
-
- Outputs:
- if `labels` is not `None`:
- Outputs the CrossEntropy classification loss of the output with the labels.
- if `labels` is `None`:
- Outputs the classification logits of shape [batch_size, num_labels].
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
- input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
- token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- num_choices = 2
-
- model = BertForMultipleChoice(config, num_choices)
- logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config):
- super(BertForMultipleChoice, self).__init__(config)
- self.bert = BertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, 1)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
- batch_size, num_choices = input_ids.shape[:2]
- flat_input_ids = input_ids.reshape(-1, input_ids.size(-1))
- flat_token_type_ids = token_type_ids.reshape(-1, token_type_ids.size(-1))
- flat_attention_mask = attention_mask.reshape(-1, attention_mask.size(-1))
- _, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask,
- output_all_encoded_layers=False, checkpoint_activations=checkpoint_activations)
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- reshaped_logits = logits.reshape(-1, num_choices)
-
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(reshaped_logits, labels)
- return loss
- else:
- return reshaped_logits
-
-
- class BertForTokenClassification(PreTrainedBertModel):
- """BERT model for token-level classification.
- This module is composed of the BERT model with a linear layer on top of
- the full hidden state of the last layer.
-
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
- `num_labels`: the number of classes for the classifier. Default = 2.
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
- with indices selected in [0, ..., num_labels].
-
- Outputs:
- if `labels` is not `None`:
- Outputs the CrossEntropy classification loss of the output with the labels.
- if `labels` is `None`:
- Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
-
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- num_labels = 2
-
- model = BertForTokenClassification(config, num_labels)
- logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config, num_labels=2):
- super(BertForTokenClassification, self).__init__(config)
- self.num_labels = num_labels
- self.bert = BertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, num_labels)
- # self.classifier = mpu.RowParallelLinear(
- # input_size=config.hidden_size,
- # output_size=num_labels,
- # bias=True,
- # input_is_parallel=True,
- # stride=1,
- # init_method=normal_init_method(mean=0.0,
- # std=config.initializer_range))
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, checkpoint_activations=False):
- sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False,
- checkpoint_activations=checkpoint_activations)
- with mpu.get_cuda_rng_tracker().fork():
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
-
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- return loss
- else:
- return logits
-
-
- class BertForQuestionAnswering(PreTrainedBertModel):
- """BERT model for Question Answering (span extraction).
- This module is composed of the BERT model with a linear layer on top of
- the sequence output that computes start_logits and end_logits
-
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
-
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
- Positions are clamped to the length of the sequence and position outside of the sequence are not taken
- into account for computing the loss.
- `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
- Positions are clamped to the length of the sequence and position outside of the sequence are not taken
- into account for computing the loss.
-
- Outputs:
- if `start_positions` and `end_positions` are not `None`:
- Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
- if `start_positions` or `end_positions` is `None`:
- Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
- position tokens of shape [batch_size, sequence_length].
-
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
-
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
-
- model = BertForQuestionAnswering(config)
- start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
-
- def __init__(self, config):
- super(BertForQuestionAnswering, self).__init__(config)
- self.bert = BertModel(config)
- # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
- # self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.qa_outputs = nn.Linear(config.hidden_size, 2)
- # self.qa_outputs = mpu.RowParallelLinear(
- # input_size=config.hidden_size,
- # output_size=2,
- # bias=True,
- # input_is_parallel=True,
- # stride=1,
- # init_method=normal_init_method(mean=0.0,
- # std=config.initializer_range))
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None,
- checkpoint_activations=False):
- sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False,
- checkpoint_activations=checkpoint_activations)
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1)
- end_logits = end_logits.squeeze(-1)
-
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions.clamp_(0, ignored_index)
- end_positions.clamp_(0, ignored_index)
-
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- return total_loss
- else:
- return start_logits, end_logits
|