|
- # coding=utf-8
- # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch DataLoader for TFRecords"""
-
- import torch
- from torch.optim.lr_scheduler import _LRScheduler
- import math
-
-
- class AnnealingLR(_LRScheduler):
- """Anneals the learning rate from start to zero along a cosine curve."""
-
- DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None']
-
- def __init__(self, optimizer, start_lr, warmup_iter, num_iters, decay_style=None, last_iter=-1, decay_ratio=0.5):
- assert warmup_iter <= num_iters
- self.optimizer = optimizer
- self.start_lr = start_lr
- self.warmup_iter = warmup_iter
- self.num_iters = last_iter + 1
- self.end_iter = num_iters
- self.decay_style = decay_style.lower() if isinstance(decay_style, str) else None
- self.decay_ratio = 1 / decay_ratio
- self.step(self.num_iters)
- if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
- print(f'learning rate decaying style {self.decay_style}, ratio {self.decay_ratio}')
-
- def get_lr(self):
- # https://openreview.net/pdf?id=BJYwwY9ll pg. 4
- if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter:
- return float(self.start_lr) * self.num_iters / self.warmup_iter
- else:
- if self.decay_style == self.DECAY_STYLES[0]:
- decay_step_ratio = (self.num_iters - self.warmup_iter) / self.end_iter
- return self.start_lr - self.start_lr * (1 - 1 / self.decay_ratio) * decay_step_ratio
- elif self.decay_style == self.DECAY_STYLES[1]:
- decay_step_ratio = min(1.0, (self.num_iters - self.warmup_iter) / self.end_iter)
- return self.start_lr / self.decay_ratio * (
- (math.cos(math.pi * decay_step_ratio) + 1) * (self.decay_ratio - 1) / 2 + 1)
- elif self.decay_style == self.DECAY_STYLES[2]:
- # TODO: implement exponential decay
- return self.start_lr
- else:
- return self.start_lr
-
- def step(self, step_num=None):
- if step_num is None:
- step_num = self.num_iters + 1
- self.num_iters = step_num
- new_lr = self.get_lr()
- for group in self.optimizer.param_groups:
- group['lr'] = new_lr
-
- def state_dict(self):
- sd = {
- # 'start_lr': self.start_lr,
- 'warmup_iter': self.warmup_iter,
- 'num_iters': self.num_iters,
- 'decay_style': self.decay_style,
- 'end_iter': self.end_iter,
- 'decay_ratio': self.decay_ratio
- }
- return sd
-
- def load_state_dict(self, sd):
- # self.start_lr = sd['start_lr']
- self.warmup_iter = sd['warmup_iter']
- self.num_iters = sd['num_iters']
- # self.end_iter = sd['end_iter']
- # self.decay_style = sd['decay_style']
- # if 'decay_ratio' in sd:
- # self.decay_ratio = sd['decay_ratio']
- self.step(self.num_iters)
-
- def switch_linear(self, args):
- current_lr = self.get_lr()
- self.start_lr = current_lr
- self.end_iter = args.train_iters - self.num_iters
- self.num_iters = 0
- self.decay_style = "linear"
|