|
- # coding=utf-8
- # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- """argparser configuration"""
-
- import argparse
- import os
- import torch
- import deepspeed
- import json
- from utils import get_hostname
-
-
- def add_model_config_args(parser):
- """Model arguments"""
-
- group = parser.add_argument_group('model', 'model configuration')
-
- group.add_argument('--transformer-xl', action='store_true', help='use transformer-xl for training')
- group.add_argument('--pretrained-bert', action='store_true',
- help='use a pretrained bert-large-uncased model instead'
- 'of initializing from scratch. See '
- '--tokenizer-model-type to specify which pretrained '
- 'BERT model to use')
- group.add_argument('--encoder-decoder', action='store_true',
- help="use the encoder-decoder architecture for blocklm")
- group.add_argument('--attention-dropout', type=float, default=0.1,
- help='dropout probability for attention weights')
- group.add_argument('--num-attention-heads', type=int, default=16,
- help='num of transformer attention heads')
- group.add_argument('--hidden-size', type=int, default=1024,
- help='tansformer hidden size')
- group.add_argument('--intermediate-size', type=int, default=None,
- help='transformer embedding dimension for FFN'
- 'set to 4*`--hidden-size` if it is None')
- group.add_argument('--num-layers', type=int, default=24,
- help='num decoder layers')
- group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
- help='layer norm epsilon')
- group.add_argument('--hidden-dropout', type=float, default=0.1,
- help='dropout probability for hidden state transformer')
- group.add_argument('--output-dropout', type=float, default=0.1,
- help='dropout probability for pooled output')
- group.add_argument('--max-position-embeddings', type=int, default=512,
- help='maximum number of position embeddings to use')
- group.add_argument('--vocab-size', type=int, default=30522,
- help='vocab size to use for non-character-level '
- 'tokenization. This value will only be used when '
- 'creating a tokenizer')
- group.add_argument('--deep-init', action='store_true',
- help='initialize bert model similar to gpt2 model.'
- 'scales initialization of projection layers by a '
- 'factor of 1/sqrt(2N). Necessary to train bert '
- 'models larger than BERT-Large.')
- group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
- help='Pad the vocab size to be divisible by this value.'
- 'This is added for computational efficieny reasons.')
- group.add_argument('--cpu-optimizer', action='store_true',
- help='Run optimizer on CPU')
- group.add_argument('--cpu_torch_adam', action='store_true',
- help='Use Torch Adam as optimizer on CPU.')
-
- return parser
-
-
- def add_fp16_config_args(parser):
- """Mixed precision arguments."""
-
- group = parser.add_argument_group('fp16', 'fp16 configurations')
-
- group.add_argument('--fp16', action='store_true',
- help='Run model in fp16 mode')
- group.add_argument('--fp32-embedding', action='store_true',
- help='embedding in fp32')
- group.add_argument('--fp32-layernorm', action='store_true',
- help='layer norm in fp32')
- group.add_argument('--fp32-tokentypes', action='store_true',
- help='embedding token types in fp32')
- group.add_argument('--fp32-allreduce', action='store_true',
- help='all-reduce in fp32')
- group.add_argument('--hysteresis', type=int, default=2,
- help='hysteresis for dynamic loss scaling')
- group.add_argument('--loss-scale', type=float, default=None,
- help='Static loss scaling, positive power of 2 '
- 'values can improve fp16 convergence. If None, dynamic'
- 'loss scaling is used.')
- group.add_argument('--loss-scale-window', type=float, default=1000,
- help='Window over which to raise/lower dynamic scale')
- group.add_argument('--min-scale', type=float, default=1,
- help='Minimum loss scale for dynamic loss scale')
- group.add_argument('--attention-scale', type=float, default=1.0)
- return parser
-
-
- def add_training_args(parser):
- """Training arguments."""
-
- group = parser.add_argument_group('train', 'training configurations')
-
- group.add_argument('--experiment-name', type=str, default="gpt-345M",
- help="The experiment name for summary and checkpoint")
- group.add_argument('--batch-size', type=int, default=4,
- help='Data Loader batch size')
- group.add_argument('--gradient-accumulation-steps', type=int, default=1,
- help='Data Loader batch size')
- group.add_argument('--weight-decay', type=float, default=0.01,
- help='weight decay coefficient for L2 regularization')
- group.add_argument('--checkpoint-activations', action='store_true',
- help='checkpoint activation to allow for training '
- 'with larger models and sequences')
- group.add_argument('--checkpoint-num-layers', type=int, default=1,
- help='chunk size (number of layers) for checkpointing')
- group.add_argument('--deepspeed-activation-checkpointing', action='store_true',
- help='uses activation checkpointing from deepspeed')
- group.add_argument('--epochs', type=int, default=None,
- help='Number of finetunning epochs. Zero results in evaluation only.')
- group.add_argument('--clip-grad', type=float, default=1.0,
- help='gradient clipping')
- group.add_argument('--train-iters', type=int, default=0,
- help='total number of iterations to train over all training runs')
- group.add_argument('--label-smoothing', type=float, default=0.0)
- group.add_argument('--log-interval', type=int, default=100,
- help='report interval')
- group.add_argument('--summary-dir', type=str, default="", help="The directory to store the summary")
- group.add_argument('--seed', type=int, default=1234, help='random seed')
- # Batch producer arguments
- group.add_argument('--reset-position-ids', action='store_true',
- help='Reset posistion ids after end-of-document token.')
- group.add_argument('--reset-attention-mask', action='store_true',
- help='Reset self attention maske after '
- 'end-of-document token.')
-
- # Learning rate.
- group.add_argument('--lr-decay-iters', type=int, default=None,
- help='number of iterations to decay LR over,'
- ' If None defaults to `--train-iters`*`--epochs`')
- group.add_argument('--lr-decay-style', type=str, default='linear',
- choices=['constant', 'linear', 'cosine', 'exponential'],
- help='learning rate decay function')
- group.add_argument('--lr-decay-ratio', type=float, default=0.1)
- group.add_argument('--lr', type=float, default=1.0e-4,
- help='initial learning rate')
- group.add_argument('--warmup', type=float, default=0.01,
- help='percentage of data to warmup on (.01 = 1% of all '
- 'training iters). Default 0.01')
- group.add_argument('--switch-linear', action='store_true', help="Switch to linear decay for cosine decay")
- # model checkpointing
- group.add_argument('--save', type=str, default=None,
- help='Output directory to save checkpoints to.')
- group.add_argument('--new-save-directory', action='store_true')
- group.add_argument('--save-epoch', type=int, default=1,
- help='number of epochs between saves')
- group.add_argument('--save-interval', type=int, default=5000,
- help='number of iterations between saves')
- group.add_argument('--no-save-optim', action='store_true',
- help='Do not save current optimizer.')
- group.add_argument('--no-save-rng', action='store_true',
- help='Do not save current rng state.')
- group.add_argument('--load', type=str, default=None,
- help='Path to a directory containing a model checkpoint.')
- group.add_argument('--no-load-optim', action='store_true',
- help='Do not load optimizer when loading checkpoint.')
- group.add_argument('--no-load-rng', action='store_true',
- help='Do not load rng state when loading checkpoint.')
- group.add_argument('--no-load-lr-scheduler', action='store_true',
- help='Do not load lr scheduler when loading checkpoint.')
- group.add_argument('--no-deepspeed-load', action='store_true', help='Not use deepspeed when loading checkpoint')
- group.add_argument('--finetune', action='store_true',
- help='Load model for finetuning. Do not load optimizer '
- 'or rng state from checkpoint and set iteration to 0. '
- 'Assumed when loading a release checkpoint.')
- group.add_argument('--resume-dataloader', action='store_true',
- help='Resume the dataloader when resuming training. '
- 'Does not apply to tfrecords dataloader, try resuming'
- 'with a different seed in this case.')
- # distributed training args
- group.add_argument('--distributed-backend', default='nccl',
- help='which backend to use for distributed training. One of [gloo, nccl]',
- choices=['nccl', 'gloo'])
- group.add_argument('--DDP-impl', default='torch', choices=['local', 'torch', 'none'],
- help='which DistributedDataParallel implementation to use.')
-
- group.add_argument('--local_rank', type=int, default=None,
- help='local rank passed from distributed launcher')
- # BlockLM training args
- group.add_argument('--block-lm', action='store_true', help="whether use the BlockLM pre-training")
- group.add_argument('--masked-lm', action='store_true', help='whether to use the mlm objective')
- group.add_argument('--bert-prob', type=float, default=0.5)
- group.add_argument('--gpt-infill-prob', type=float, default=0.5)
- group.add_argument('--gpt-min-ratio', type=float, default=0.5)
- group.add_argument('--gap-sentence-prob', type=float, default=0.0)
- group.add_argument('--gap-sentence-ratio', type=float, default=0.15)
- group.add_argument('--avg-block-length', type=int, default=3)
- group.add_argument('--short-seq-prob', type=float, default=0.0)
- group.add_argument('--single-span-prob', type=float, default=0.0)
- group.add_argument('--task-mask', action='store_true', help="Use different mask for generation and blank filling")
- group.add_argument('--no-shuffle-block', action='store_true', help="not shuffle the blocks when filling the blank")
- group.add_argument('--no-block-position', action='store_true',
- help='Use (rough) absolute positions instead of block positions')
- group.add_argument('--sentinel-token', action='store_true',
- help="Use sentinel (mask) tokens to replace 2d position encoding")
- group.add_argument('--block-mask-prob', type=float, default=0.0)
- group.add_argument('--context-mask-ratio', type=float, default=0.0)
- group.add_argument('--random-position', action='store_true',
- help="Use random start position to cover all the position embeddings")
- return parser
-
-
- def add_evaluation_args(parser):
- """Evaluation arguments."""
-
- group = parser.add_argument_group('validation', 'validation configurations')
-
- group.add_argument('--eval-batch-size', type=int, default=None,
- help='Data Loader batch size for evaluation datasets.'
- 'Defaults to `--batch-size`')
- group.add_argument('--eval-iters', type=int, default=100,
- help='number of iterations to run for evaluation'
- 'validation/test for')
- group.add_argument('--eval-interval', type=int, default=1000,
- help='interval between running evaluation on validation set')
- group.add_argument('--eval-epoch', type=int, default=1,
- help='epoch between running evaluation on validation set')
- group.add_argument('--eval-seq-length', type=int, default=None,
- help='Maximum sequence length to process for '
- 'evaluation. Defaults to `--seq-length`')
- group.add_argument('--eval-max-preds-per-seq', type=int, default=None,
- help='Maximum number of predictions to use for '
- 'evaluation. Defaults to '
- 'math.ceil(`--eval-seq-length`*.15/10)*10')
- group.add_argument('--overlapping-eval', type=int, default=32)
-
- return parser
-
-
- def add_text_generate_args(parser):
- """Text generate arguments."""
-
- group = parser.add_argument_group('Text generation', 'configurations')
- group.add_argument("--temperature", type=float, default=1.0)
- group.add_argument("--top_p", type=float, default=0.0)
- group.add_argument("--top_k", type=int, default=0)
- group.add_argument("--out-seq-length", type=int, default=256)
- group.add_argument("--num-beams", type=int, default=1)
- group.add_argument("--length-penalty", type=float, default=0.0)
- group.add_argument("--no-repeat-ngram-size", type=int, default=0)
- group.add_argument("--min-tgt-length", type=int, default=0)
- group.add_argument("--select-topk", action='store_true')
- group.add_argument("--blank-maskratio", type=float, default=0.1)
- return parser
-
-
- def add_data_args(parser):
- """Train/valid/test data arguments."""
-
- group = parser.add_argument_group('data', 'data configurations')
-
- group.add_argument('--model-parallel-size', type=int, default=1,
- help='size of the model parallel.')
- group.add_argument('--shuffle', action='store_true',
- help='Shuffle data. Shuffling is deterministic '
- 'based on seed and current epoch.')
- group.add_argument('--filter-english', action='store_true')
- group.add_argument('--train-data', nargs='+', default=None,
- help='Whitespace separated filenames or corpora names '
- 'for training.')
- group.add_argument('--valid-data', nargs='*', default=None,
- help="""Filename for validation data.""")
- group.add_argument('--test-data', nargs='*', default=None,
- help="""Filename for testing""")
- group.add_argument('--data-dir', type=str, default=None, help="The data path to all the data files")
- group.add_argument('--input-data-sizes-file', type=str, default='sizes.txt',
- help='the filename containing all the shards sizes')
-
- group.add_argument('--delim', default=',',
- help='delimiter used to parse csv data files')
- group.add_argument('--text-key', default='sentence',
- help='key to use to extract text from json/csv')
- group.add_argument('--eval-text-key', default=None,
- help='key to use to extract text from '
- 'json/csv evaluation datasets')
- group.add_argument('--split', default='1000,1,1',
- help='comma-separated list of proportions for training,'
- ' validation, and test split')
-
- group.add_argument('--no-lazy-loader', action='store_true',
- help='whether to lazy read the data set')
- group.add_argument('--half-lazy-loader', action='store_true')
- group.add_argument('--loader-scatter', type=int, default=None, help='Number of scatters to use for dataloaders')
- group.add_argument('--loose-json', action='store_true',
- help='Use loose json (one json-formatted string per '
- 'newline), instead of tight json (data file is one '
- 'json string)')
- group.add_argument('--presplit-sentences', action='store_true',
- help='Dataset content consists of documents where '
- 'each document consists of newline separated sentences')
- group.add_argument('--num-workers', type=int, default=2,
- help="""Number of workers to use for dataloading""")
- group.add_argument('--tokenizer-model-type', type=str,
- default=None,
- help="Model type to use for sentencepiece tokenization \
- (one of ['bpe', 'char', 'unigram', 'word']) or \
- bert vocab to use for BertWordPieceTokenizer (one of \
- ['bert-large-uncased', 'bert-large-cased', etc.])")
- group.add_argument('--tokenizer-path', type=str, default='tokenizer.model',
- help='path used to save/load sentencepiece tokenization '
- 'models')
- group.add_argument('--tokenizer-type', type=str,
- default='BertWordPieceTokenizer',
- choices=['CharacterLevelTokenizer',
- 'SentencePieceTokenizer',
- 'BertWordPieceTokenizer',
- 'GPT2BPETokenizer',
- 'ChineseSPTokenizer'],
- help='what type of tokenizer to use')
- group.add_argument('--no-pre-tokenize', action='store_true')
- group.add_argument("--cache-dir", default=None, type=str,
- help="Where to store pre-trained BERT downloads")
- group.add_argument('--use-tfrecords', action='store_true',
- help='load `--train-data`, `--valid-data`, '
- '`--test-data` from BERT tf records instead of '
- 'normal data pipeline')
- group.add_argument('--seq-length', type=int, default=512,
- help="Maximum sequence length to process")
- group.add_argument('--mem-length', type=int, default=0,
- help="The memory length to preserve")
- group.add_argument('--max-preds-per-seq', type=int, default=None,
- help='Maximum number of predictions to use per sequence.'
- 'Defaults to math.ceil(`--seq-length`*.15/10)*10.'
- 'MUST BE SPECIFIED IF `--use-tfrecords` is True.')
- group.add_argument('--non-sentence-start', type=float, default=0.0)
- group.add_argument('--sample-one-document', action='store_true', help='only sample one document in one sample')
- group.add_argument('--load-splits', type=str, default=None, help="The path to load split indices from")
- group.add_argument('--save-splits', type=str, default=None, help="The path to save split indices to")
- group.add_argument('--save-test-data', type=str, default=None, help="The path to save the test data")
- group.add_argument('--multi-task-data', nargs='*', default=None,
- help="Downsteam task names for multi-task pre-training")
- group.add_argument('--multi-task-ratio', type=float, default=0.0, help="Ratio for multi-task pre-training")
- group.add_argument('--multi-seq-length', type=int, default=None)
- group.add_argument('--multi-batch-size', type=int, default=None)
- return parser
-
-
- def add_finetune_config_args(parser):
- group = parser.add_argument_group('finetune', 'finetune configurations')
- group.add_argument('--task', type=str, help='Task name.')
- group.add_argument('--load-pretrained', type=str, help="Load pretrained model", default=None)
- group.add_argument('--pool-token', type=str, choices=['start', 'pad', 'cls'],
- help='The token to pool the sequence representation', default='cls')
- group.add_argument('--cloze-eval', action='store_true', help='Evaluation dataset with cloze task')
- group.add_argument('--multi-token', action='store_true', help='Use multi token for cloze evaluation')
- group.add_argument('--segment-length', type=int, default=0, help="The maximum segment length for cloze evaluation")
- group.add_argument('--loss-func', type=str, choices=["cross_entropy", "hinge", "generative", "mix"],
- default="cross_entropy")
- group.add_argument('--block-lm-ratio', type=float, default=0.0)
- group.add_argument('--adapet', action='store_true', help="Use the decoupled cross entropy loss in AdaPET")
- group.add_argument('--pattern-id', type=int, default=0)
- group.add_argument('--fast-decode', action='store_true',
- help="Fast decode for multi-token cloze. Can only be used without checkpoint activation.")
- group.add_argument('--few-superglue', action='store_true')
- group.add_argument('--eval-valid', action='store_true', help="Whether evaluate on the valid set")
- group.add_argument('--validation-metric', type=str, default=None)
- group.add_argument('--unidirectional', action='store_true', help="Use the left to right language model")
- group.add_argument('--src-seq-length', type=int, default=None)
- group.add_argument('--tgt-seq-length', type=int, default=None)
- group.add_argument('--adam-beta1', type=float, default=0.9)
- group.add_argument('--adam-beta2', type=float, default=0.999)
- group.add_argument('--adam-eps', type=float, default=1e-8)
- group.add_argument('--optimizer', type=str, choices=['adam', 'adafactor'], default='adam')
- group.add_argument('--wsc-negative', action='store_true')
- group.add_argument('--overwrite', action='store_true')
- group.add_argument('--no-validation', action='store_true')
- # Continuous prompt arguments
- group.add_argument('--continuous-prompt', action='store_true', help="Use continuous prompt for PET")
- group.add_argument('--num-prompt-tokens', type=int, default=0)
- group.add_argument('--prompt-func', default='lstm', choices=["lstm", "mlp", "none"])
- group.add_argument('--freeze-transformer', action='store_true', default=False)
- group.add_argument('--tune-prefix-layers', type=int, default=None)
- group.add_argument('--prefix-prompt', type=int, default=0)
- group.add_argument('--prompt-init', action='store_true', default=False)
- return parser
-
-
- def get_args():
- """Parse all the args."""
-
- parser = argparse.ArgumentParser(description='PyTorch BERT Model')
- parser = add_model_config_args(parser)
- parser = add_fp16_config_args(parser)
- parser = add_training_args(parser)
- parser = add_evaluation_args(parser)
- parser = add_text_generate_args(parser)
- parser = add_data_args(parser)
- parser = add_finetune_config_args(parser)
-
- # Include DeepSpeed configuration arguments
- parser = deepspeed.add_config_arguments(parser)
-
- args = parser.parse_args()
- if not args.train_data and not args.data_dir:
- print('WARNING: No training data specified')
-
- args.cuda = torch.cuda.is_available()
-
- args.rank = int(os.getenv('RANK', '0'))
- args.world_size = int(os.getenv("WORLD_SIZE", '1'))
- if hasattr(args, 'deepspeed_mpi') and args.deepspeed_mpi:
- mpi_define_env(args)
- elif os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'):
- # We are using (OpenMPI) mpirun for launching distributed data parallel processes
- local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'))
- local_size = int(os.getenv('OMPI_COMM_WORLD_LOCAL_SIZE'))
-
- # Possibly running with Slurm
- num_nodes = int(os.getenv('SLURM_JOB_NUM_NODES', '1'))
- nodeid = int(os.getenv('SLURM_NODEID', '0'))
-
- args.local_rank = local_rank
- args.rank = nodeid * local_size + local_rank
- args.world_size = num_nodes * local_size
-
- args.model_parallel_size = min(args.model_parallel_size, args.world_size)
- if args.rank == 0:
- print('using world size: {} and model-parallel size: {} '.format(
- args.world_size, args.model_parallel_size))
-
- args.dynamic_loss_scale = False
- if args.loss_scale is None:
- args.dynamic_loss_scale = True
- if args.rank == 0:
- print(' > using dynamic loss scaling')
-
- # The args fp32_* or fp16_* meant to be active when the
- # args fp16 is set. So the default behaviour should all
- # be false.
- if not args.fp16:
- args.fp32_embedding = False
- args.fp32_tokentypes = False
- args.fp32_layernorm = False
-
- if hasattr(args, "deepspeed") and args.deepspeed and args.deepspeed_config is not None:
- with open(args.deepspeed_config) as file:
- deepspeed_config = json.load(file)
- if "train_micro_batch_size_per_gpu" in deepspeed_config:
- args.batch_size = deepspeed_config["train_micro_batch_size_per_gpu"]
- if "gradient_accumulation_steps" in deepspeed_config:
- args.gradient_accumulation_steps = deepspeed_config["gradient_accumulation_steps"]
- else:
- args.gradient_accumulation_steps = 1
- if "optimizer" in deepspeed_config:
- optimizer_params_config = deepspeed_config["optimizer"].get("params", {})
- args.lr = optimizer_params_config.get("lr", args.lr)
- args.weight_decay = optimizer_params_config.get("weight_decay", args.weight_decay)
- return args
-
-
- def mpi_define_env(args):
- from mpi4py import MPI
- comm = MPI.COMM_WORLD
- rank = comm.Get_rank()
- world_size = comm.Get_size()
-
- master_addr = None
- if rank == 0:
- master_addr = get_hostname()
- master_addr = comm.bcast(master_addr, root=0)
-
- # Determine local rank by assuming hostnames are unique
- proc_name = MPI.Get_processor_name()
- all_procs = comm.allgather(proc_name)
- local_rank = sum([i == proc_name for i in all_procs[:rank]])
-
- os.environ['RANK'] = str(rank)
- os.environ['WORLD_SIZE'] = str(world_size)
- args.local_rank = local_rank
- args.world_size = world_size
- args.rank = rank
- os.environ['MASTER_ADDR'] = master_addr
- os.environ['MASTER_PORT'] = "29500" # TORCH_DISTRIBUTED_DEFAULT_PORT = 29500
-
- print(
- "Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}"
- .format(os.environ['RANK'],
- args.local_rank,
- os.environ['WORLD_SIZE'],
- os.environ['MASTER_ADDR'],
- os.environ['MASTER_PORT']))
|